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The author concurs that the theoretical development presented is only directly applicable
to an infinite plate and that some liberties are taken in the application of the results to
plates of finite dimensions. But this is common practice in engineering applications.

Comment I
The numerical results for Figs 3-5 do indeed include the correction factor of 1.95 to

account for the closeness of the boundaries. The factor was inadvertently misquoted in the
footnote of p. 511. That is A == 1.95A. [n order to double check our numerical results. we
wrote an independent program and the results for,., = 3 and,., == I. for example. are shown
in Figs RI and R2. respectively.

The following expression was computed first

and the results at , == 0.2 were used then to evaluate the const'lOt Cu. It may also be n011.'<1
that only a small number of terms were required to obtain the accuracy shown in Figs R I
and R2.

Comment 2
Sheet 1.1.2 of Rooke and Cartwright (1974) is not applicable in this case because the

moment is in the dirt.'ction of the :-axis.

Comment 3
The comparisons made in the paper were for,., == 3. I. 0.25. respectively. However.

because the author in his text had not used the symbol,." a last minute change resulted in
the figures being mislabeled as c/h rather than hie.

The author does not agree with the remaining comment. The same major 3-D correction
effects will appear in the case of an infinite plate as well as in the case of a finite plate
(provided that one stays away from the boundary layer). Moreover. the bending solution
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is represented by the odd function of the general solution (see Folias, 1990). which in the
middle of the plate is the integral of the stretching solution with respect to =(Folias, 1975).

The author would like to thank Dr Iyengar for bringing to his attention the above
oversights and apologizes to the readers for any inconvenience. Perhaps it may be appro
priate herc to notc that although the author could have actually pushcd the solution
analytically as well as numerically further (Folias, 1986. 1989; Penado and Folias. 1989;
Folias and Wang, 1(90), he believed that he should not compete with the paper by Iyengar
ct al. (1988). However. as was noted in the paper. the contents of this work were actually
carried out in 1975 hut the reviewers at that time did not fully appreciate the contribution
or the work. and. as a result, it was circul.tted as a technical report.
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